On the Legacy of Free Divisors Ii: Free* Divisors and Complete Intersections

نویسندگان

  • JAMES DAMON
  • J. DAMON
چکیده

We provide a criterion that for an equivalence group G on holomorphic germs, the discriminant of a G-versal unfolding is a free divisor. The criterion is in terms of the discriminant being Cohen– Macaulay and generically having Morse-type singularities. When either of these conditions fails, we provide a criterion that the discriminant have a weaker free* divisor structure. For nonlinear sections of a free* divisor V , we obtain a formula for the number of singular vanishing cycles by modifying an earlier formula obtained with David Mond and taking into account virtual singularities. 2000 Math. Subj. Class. Primary: 14B07, 14M12, 32S30; Secondary: 13C12, 14B10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical rational equivalence of intersections of divisors

We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rati...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

Free Divisors in Prehomogeneous Vector Spaces

We study linear free divisors, that is, free divisors arising as discriminants in prehomogeneous vector spaces, and in particular in quiver representation spaces. We give a characterization of the prehomogeneous vector spaces containing such linear free divisors. For reductive linear free divisors, we prove that the numbers of geometric and representation theoretic irreducible components coinci...

متن کامل

Solvable Groups, Free Divisors and Nonisolated Matrix Singularities Ii: Vanishing Topology

In this paper we use the results from the first part to compute the vanishing topology for matrix singularities based on certain spaces of matrices. We place the variety of singular matrices in a geometric configuration of free divisors which are the “exceptional orbit varieties”for repesentations of solvable groups. Because there are towers of representations for towers of solvable groups, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003